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Observational evidence

◮ Most physicists would agree that a large fraction of our universe,
and the majority of the matter, is some form of “dark matter”

◮ The evidence for dark matter comes from a variety of sources at
all scales

◮ Galaxy rotation curves

◮ Galaxy clusters

◮ Gravitational lensing

◮ CMB observations

◮ Galactic collisions
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Observational evidence

NASA:Markevitch et al., Clowe et al.



What is the dark matter?

◮ Most discussed candidate - Weakly Interacting Massive Particles
or WIMPs

◮ Produced during the Big Bang
◮ Decouples from ordinary matter as the universe cools and

expands
◮ Would exist today with densities of about 1000/m3

◮ A theoretical candidate comes from supersymmetry - neutralino
◮ The lightest supersymmetric partner (LSP), with a mass 10 GeV

< mχ < 1000 GeV
◮ The LSP is stable (by R-parity)

◮ Other candidates, e.g. Kaluza-Klein particles from universal
extra dimensions



How do we find it?

◮ Indirect - Detect annihilation products from regions of relatively
high density like the sun or the center of the galaxy

◮ Accelerators - create a WIMP at the LHC

◮ Direct - WIMPs can scatter elastically with nuclei, and the recoil
can be detected directly



How do we find it?

◮ Direct - WIMPs can scatter elastically with nuclei, and the recoil
can be detected directly

◮ Like neutrinos, dark matter interacts very weakly with ordinary
matter

◮ The key to dark matter detection, like neutrino detection, is the
energy threshold and backgrounds

◮ The energy deposited by dark matter in an elastic collision is
∼10-100 keV

◮ Can’t use standard neutrino detector techniques

◮ Water Cerenkov threshold is too high (∼several MeV)
◮ Liquid scintillators have 14C backgrounds



Rate calculation
◮ The differential cross section (for spin-independent interactions)

per kilogram of target mass per unit recoil energy is
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Rate calculation
◮ The differential cross section (for spin-independent interactions)

per kilogram of target mass per unit recoil energy is

dR
dQ

=
ρ0

mχ
×

σ0A2

2µ2
p

× F 2(Q) ×

∫

vm

f (v)

v
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◮ Dark matter density component, from local and galactic
observations with historically a factor of 2 uncertainty

◮ The unknown particle physics component, hopefully determined
by experiment

◮ Proportional to A2 for most models

◮ The nuclear part, approximately given by F 2(Q) ∝ e−Q/Q0 where
Q0 ∼

80
A5/3 MeV

◮ The velocity distribution of dark matter in the galaxy - of order
30% uncertainty, and vm =

√

Q/2m2
r



Rate calculation

◮ Integrated rate above threshold, 100 GeV WIMP, σ0 = 10−45 cm2

I =

∫
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Backgrounds to dark matter



Where do backgrounds come from?

◮ Cosmic rays
◮ Underground labs

◮ Radioactive contaminants, including radon
◮ Purification systems
◮ Radon-free air, surface cleaning, inert cover gases

◮ Detector materials - steel, glass, etc
◮ Use radiopure materials, self-shielding

◮ The target itself?
◮ Discrimination against different types of backgrounds
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“Noble liquid revolution”

◮ The most successful target has been germanium, and CDMS
has the best limit to date

◮ And events!!!

◮ Small detectors collect the heat and ionization released when
radiation interacts in the germanium



“Noble liquid revolution”

◮ The most successful target has been germanium, and CDMS
has the best limit to date

◮ And events!!!

◮ Small detectors collect the heat and ionization released when
radiation interacts in the germanium

◮ While successful, these detectors are difficult to scale
◮ Current detectors consist of a few kg
◮ Germanium is expensive
◮ Fabrication and testing of the CDMS detectors are even more so



“Noble liquid revolution”

Why noble gases

◮ Relatively cheap, available, dense

◮ Easy to purify

◮ Emission of scintillation light when exposed to radiation e.g. 40
photons/keV for argon, comparable to common radiation
detectors like NaI

◮ Discrimination capability between nuclear recoils that make up a
WIMP signal and electronic recoils from most backgrounds

◮ Easily scalable (large targets, self-shielding)



In particular...

◮ Argon - all the advantages, but...
◮

39Ar, a beta emitter at 1 Bq/kg
◮ Or about 107 events/keV/100 kg/yr
◮ Requires discrimination against electronic recoils at that level to

eliminate 39Ar background
◮ Or depleted 39Ar

◮ Neon - no radioisotopes, but...
◮ Smaller cross section



WIMPs

◮ Integrated rate above threshold, 100 GeV WIMP, σ0 = 10−45 cm2
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WIMPs

WIMP Mass [GeV/c2]

C
ro

ss
-s

ec
tio

n 
[c

m2 ] (
no

rm
al

is
ed

 to
 n

uc
le

on
)

080428142801

  http://dmtools.brown.edu/ 
  Gaitskell,Mandic,Filippini

10
1

10
2

10
3

10
-50

10
-48

10
-46

10
-44

10
-42

080428142801
Baltz and Gondolo, 2004, Markov Chain Monte Carlos
Masiero, Profumo and Ullio: general Split SUSY
Ellis et. al 2005 NUHM (mu>0, pion Sigma=64 MeV)
DEAP CLEAN 1000kg FV (proj)
LUX 300 kg LXe Projection (Jul 2007)
XENON100 (150 kg) projected sensitivity
DEAP CLEAN 150kg FV (proj)
SuperCDMS (Projected) 2-ST@Soudan
XENON10 2007 (Net 136 kg-d)
CDMS: 2004+2005 (reanalysis) +2008 Ge
DATA listed top to bottom on plot

◮ If we detect WIMPs, require more statistics → bigger detectors
◮ If we do not detect WIMPs, require more sensitivity → bigger

detectors



DEAP/CLEAN program

◮ Dark matter and neutrino detection with argon and neon

◮ MiniCLEAN - 500 kg of active volume (150-170 kg fiducial)
◮ To be installed underground at SNOLAB in summer-fall 2010
◮ Will run with both argon and neon

◮ DEAP3600 - 1 tonne fiducial
◮ Recently awarded $26.4M in funding jointly with SNO+,

construction underway for commissioning at SNOLAB in 2011
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Scintillation in liquid noble gases

◮ Radiation (gamma, electron, neutron, WIMP) collides with
electron or nucleus in the liquid and deposits energy

◮ The recoiling electrons or nuclei excite other atoms
◮ The creation of Ar∗ or Ar+
◮ Recombination produces more excited atoms, which join with

other atoms to form Ar∗2 dimers

◮ Noble gas molecules are not stable and quickly decay, emitting
ultraviolet photons

◮ In dual-phase detectors, one also collects the ionization



Scintillation in noble gases

◮ Two molecular states - singlet and triplet
◮ Singlet decays very fast (ns in LAr and LNe) but the triplet decays

slower (µs in LAr and LNe)

◮ Electronic and nuclear recoils produce different ratios of singlet
to triplet molecules

◮ The pulse timing allows you to discriminate between the two types
of events - pulse shape discrimination (PSD)



Scintillation in noble gases
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◮ WIMP signal would be nuclear recoils, most backgrounds
(including 39Ar) are electronic recoils



Scintillation in noble gases

◮ Two molecular states - singlet and triplet
◮ Singlet decays very fast (ns in LAr and LNe) but the triplet decays

slower (µs in LAr and LNe)

◮ Electronic and nuclear recoils produce different ratios of singlet
to triplet molecules

◮ The pulse timing allows you to discriminate between the two types
of events - pulse shape discrimination (PSD)

◮ WIMP signal would be nuclear recoils, most backgrounds
(including 39Ar) are electronic recoils

◮ In addition, nuclear recoils produce less light than electronic
recoils - nuclear recoil scintillation efficiency or Leff

◮ PSD in combination with Leff sets threshold of detector



What is to be done for DEAP/CLEAN?

◮ Measure PSD in both argon and neon
◮ Demonstrate that we can eliminate 39Ar background

◮ Measure nuclear recoil scintillation efficiency, Leff , in both argon
and neon

◮ Get a handle on backgrounds from Rn, etc.



Two prototype detectors

◮ MicroCLEAN at Yale

◮ DEAP1 at SNOLAB



MicroCLEAN

◮ Small, 3.14 liter detector designed to
optimize light collection

◮ Goals:
◮ Measure PSD down to low energies

relevant for a dark matter search
◮ Measure nuclear recoil scintillation

efficiency



MicroCLEAN

◮ Two 20 cm photomultiplier tubes (PMTs)
immersed in liquid to detect the light

◮ 20 cm diameter by 10 cm long teflon
cylinder contains the active region

◮ As the scintillation light is in the UV, all inner
surfaces coated with wavelength shifter
(TPB) to convert to detectable blue light
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Calibration sources

◮ Several external gamma ray sources, including:
◮

57Co - 122 keV
◮

133Ba - 356 keV
◮

22Na - 511 keV
◮

137Cs - 662 keV

◮ D-D neutron generator provides 2.8 MeV monoenergetic
neutrons to investigate nuclear recoils

◮ Require coincidence with organic scintillator



Calibration sources

◮ There are a few problems with external gamma ray sources:
◮ Energy is too high - WIMP signal is tens of keV
◮ External - will not penetrate larger detectors because of

self-shielding
◮ Non-uniform - only illuminate one area of detector

◮ Can we fill the detector with a low energy source without
increasing the backgrounds?



Calibration sources

◮ XENON10 used activated xenon isotopes to obtain uniform
calibration at the end of their physics run in 2007 (Ni et al.) but:

◮ Halflives on the order of a week, limiting repetition
◮ Energies too high (164 and 236 keV)
◮ Activation may have produced more long-lived isotopes that would

increase the overall backgrounds



Calibration sources

◮ XENON10 used activated xenon isotopes to obtain uniform
calibration at the end of their physics run in 2007 (Ni et al.) but:

◮ Halflives on the order of a week, limiting repetition
◮ Energies too high (164 and 236 keV)
◮ Activation may have produced more long-lived isotopes that would

increase the overall backgrounds
◮ An alternative is 83Krm, which decays with a half life of 1.83

hours
◮ Produces two conversion electrons at 32.1 and 9.4 keV separated

by 154 ns
◮ Recently tested in xenon (Kastens et al., Manalaysay et al.), but

might the krypton freeze out in argon or neon?



83Krm in argon

◮ A zeolite trap charged with 83Rb - the 83Rb decays with a half life
of 86 days into 83Krm, which can escape the zeolite



83Krm in argon
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◮ More than half the atoms produced in the trap get into the liquid



83Krm in argon
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83Krm in argon
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hrs



83Krm in argon

◮ Can we tell where the 83Krm is in the detector?
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Light yield and energy response

◮ Measure light yield with the 83Krm peak of 6.0 ± 0.2
photoelectrons/keV

◮ Light yield vs. energy using the external gamma sources:
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Lippincott et al., arXiv:0911.5453
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Nuclear recoil scintillation efficiency

◮ Scintillation light from nuclear recoils is suppressed relative to
electronic recoils of the same energy

◮ Full microphysics of scintillation are not completely understood
◮ Some energy in high density tracks is lost to heat - Lindhard effect
◮ High density tracks can cause a reduction of excited atoms

through collisions
◮ Some ion-electron pairs never recombine, producing fewer

molecules and less light

◮ Nuclear recoil scintillation efficiency (Leff ), in combination with
PSD, sets the threshold of the detector



Nuclear recoil scintillation efficiency

Erecoil =
2E

(1 + A)2

(

1 + A − cos2 θ − cos θ
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A2 + cos2 θ − 1
)



Simulations

8 ft

◮ Geant4 simulation to account
for energy loss in multiple
scattering

◮ Multiple scattering in LAr
◮ One scatter in LAr, one

scatter in surrounding
detector

◮ Output in scintillation photons
per event and time-of-flight



Preliminary results
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Nuclear recoil scintillation efficiency in argon
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◮ Analysis ongoing
◮ Straight line fit between 30 and 100 keV returns

Leff = 0.25 ± 0.01

Gastler et al., in preparation.



Nuclear recoil scintillation efficiency in argon

◮ Notation - “keVr” is the real energy of a recoil in the liquid

◮ “keVee” is the electron equivalent energy or “apparent” energy,
as the calibrations are in general electronic recoils

◮ To convert from one to the other, multiply the energy in keVr by
Leff or divide energy in keVee by Leff
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Pulse Shape Discrimination

◮ Nuclear and electronic recoils produce different ratios of singlet
(prompt light) and triplet (late light) molecules
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PSD methods - Prompt Fraction

◮ Prompt fraction defined as the amount of light arriving in the first
90 ns divided by the total amount of light detected

◮ A 90 ns window was chosen to optimize a Gaussian model of the
prompt fraction, but the PSD is not very sensitive to choice of
window



PSD methods - Prompt Fraction
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◮ Project the previous plot onto the y-axis as a function of energy -
can measure the prompt fraction distribution and the leakage

◮ Electronic recoil contamination (ERC) is defined as the
probability of mistaking an electronic recoil for a nuclear recoil



Observed PSD
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◮ We measure a background and statistics-limited ERC of
4.9 × 10−6 from 55-110 keVr with no contamination above 69
keVr using the prompt fraction method

◮ With a second method, the multi-bin method, we do about a
factor of 3 better

Lippincott et al., PRC78:035801 (2008)
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DEAP1

◮ DEAP1 is a similar detector to MicroCLEAN, trading light yield
for lower backgrounds

◮ PMTs are outside of the cell, and look through acrylic light
guides

◮ Since PMTs are a major source of backgrounds (glass is
radioactive), the acrylic serves as a passive shield

◮ Goals:
◮ Demonstrate high statistics PSD
◮ Understand background reduction - clean surfaces, low radon, etc.



DEAP1



DEAP1 PSD
◮ Run on surface at Queen’s University in Kingston, Ontario
◮ Light yield of 2.8 pe/keV
◮ Used a 22Na source with a tag of the 1274 gamma to reduce

uncorrelated backgrounds
◮ Observed 1.7 × 107 events between 40–80 keVee with no

leakage
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Boulay et al., arXiv:0904.2930v1 [astro-ph.IM]
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Understanding backgrounds

◮ DEAP1 is now underground at SNO, in the old control room
◮ All surfaces cleaned to eliminate radon daughters

◮ In first run from summer-fall 2008, we saw residual backgrounds
from alpha contamination



Understanding backgrounds

◮ DEAP1 is now underground at SNO, in the old control room
◮ All surfaces cleaned to eliminate radon daughters

◮ In first run from summer-fall 2008, we saw residual backgrounds
from alpha contamination
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Radon



Why do we care?

◮ A - Event happens in the bulk, we see the alpha clearly
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Why do we care?

◮ B - Event happens at surface, nuclear recoil enters bulk
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Why do we care?

◮ C - Event happens at surface, we see high energy alpha
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Why do we care?
◮ D - Event happens below TPB layer (or in the acrylic), we only

see part of the alpha or part of the nuclear recoil
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Understanding alpha backgrounds

◮ A clear component of 222Rn that enters with the argon before
decaying

◮ We see evidence for supported 222Rn
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Understanding alpha backgrounds

◮ A clear component of 222Rn that enters with the argon before
decaying

◮ We see evidence for supported 222Rn

Energy (keV)
1000 2000 3000 4000 5000 6000 7000 8000 9000

C
ou

nt
s/

50
 k

eV

0

10

20

30

40

50

60

Rn)222Post-top-up (spike of 

Rn lifetime = 5.5 days)22210 days later  (

Rn chain energies (5.48, 6.0, 7.7 MeV)222



Alpha backgrounds - 2009 run

◮ A new chamber in operation from March-December 2009
◮ Replaced reflective paint with teflon, recleaned surfaces
◮ Argon passed through charcoal trap during fill to remove Rn
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Alpha backgrounds - 2009 run

◮ 600 hours of background data
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What is in our detector?
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◮ There are methods to tag various components of this
background

◮ For example, there appears to be a peak at 6.7ish MeV
◮ A Po daughter of 220Rn in the thorium decay chain has that energy



Tagging thorium chain using 220Rn →
216Po →

212Pb

◮
216Po has a 145 ms halflife - random coincidence rate is about 1
alpha every 2000 s



Tagging thorium chain using 220Rn →
216Po →

212Pb

◮ There are ∼ 60 of these tagged events
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Tagging thorium chain using 220Rn →
216Po →

212Pb

◮ There are ∼ 60 of these tagged events
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Where is the 220Rn coming from then?

◮ How far can the radon atoms travel in 60 s?

◮ We checked over the plumbing, and it turns out there are some
relatively hot ceriated welds

◮ Radon emanation from the welds? Steel seems more likely...



Unanswered questions

◮ With the tag for 220Rn and another for 222Rn, we have accounted
for roughly half the alpha activity - What is the other half?

◮
210Po is an obvious candidate, and a rough estimation does show
a peak at 5.3 MeV



Unanswered questions

◮ With the tag for 220Rn and another for 222Rn, we have accounted
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Unanswered questions

◮ With the tag for 220Rn and another for 222Rn, we have accounted
for roughly half the alpha activity - What is the other half?

◮
210Po is an obvious candidate

◮ Degraded alphas from the acrylic and TPB layer seem the most
likely candidates for the continuum below 5 MeV

◮ The new chamber reduced 222Rn by a factor of 5 (hot paint), and
other sources by a factor of 4.5

Source Rate (mHz) in Rate (mHz) in
old chamber new chamber

All 2 0.4
220Rn 0.030 ± 0.007 0.027 ± 0.004
222Rn 0.17 ± 0.02 0.033 ± 0.006

210Po plus 0.88 0.2



Unanswered questions

◮ We need more background reduction
◮ Ultimately, we really care about the low energy backgrounds
◮ The low energy rate also decreased from the old chamber to the

new, so there is a connection

◮ New chamber under construction
◮ Purification of TPB and removal of 210Po from the acrylic



Backgrounds summary
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What is to be done

◮ Measure light yield

◮ Measure Leff

◮ Measure PSD

◮ Can we detect pp neutrinos and dark matter with neon?



Neon results

◮
83Krm works in neon as well

◮ Measured light yield of 3 pe/keVee
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Neon results

◮ Nuclear recoil scintillation efficiency in neon
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Neon results

◮ We’ve also measured PSD with the prompt fraction method
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Next generation
◮ CLEAN (Big CLEAN)

◮ 40-50 tonne detector with neon
◮ Dark matter sensitivity plus a 1% measurement of pp neutrinos

within 2 years



CLEAN simulations

◮ Primary pp-neutrino background - U/Th/K gammas from PMTs
◮ Simulated between 10-30 days of these backgrounds, projecting

out to a full year
◮ Leakage into a 10 tonne fiducial volume (R < 125 cm) is 1% of

pp-solar neutrino rate
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CLEAN simulations

◮ Currently characterizing position reconstruction
◮ Very preliminary studies show about 20 cm resolution at the

fiducial radius

◮ Simulate other backgrounds and determine dark matter
sensitivity



Summary

◮ MicroCLEAN
◮ Light yield of 6.0 pe/keVee
◮ Successful measurement of Leff
◮ Measured PSD at low energies, with background and statistics

limited sensitivity of about 2 × 10−6

◮ Measurements repeated in neon
◮ DEAP1

◮ Measured 6 × 10−8 PSD on surface
◮ Now operating underground
◮ Continuing to understand and eliminate backgrounds
◮ Measure PSD to < 10−8 in next few months

◮ MiniCLEAN, DEAP3600 (and CLEAN) are competitive dark
matter detectors that will produce interesting results in the next
few years





End
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